Recognition of Handwritten Characters using Deep Convolutional Neural Network
نویسندگان
چکیده
منابع مشابه
Arabic Handwritten Characters Recognition using Convolutional Neural Network
Handwritten Arabic character recognition systems face several challenges, including the unlimited variation in human handwriting and large public databases. In this work, we model a deep learning architecture that can be effectively apply to recognizing Arabic handwritten characters. A Convolutional Neural Network (CNN) is a special type of feed-forward multilayer trained in supervised mode. Th...
متن کاملRecognizing Handwritten Japanese Characters Using Deep Convolutional Neural Networks
In this work, deep convolutional neural networks are used for recognizing handwritten Japanese, which consists of three different types of scripts: hiragana, katakana, and kanji. This work focuses on the classification of the type of script, character recognition within each type of script, and character recognition across all three types of scripts. Experiments were ran on the Electrotechnical...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملRecognition of Handwritten Hindi Characters using Backpropagation Neural Network
Automatic recognition of handwritten characters is a difficult task because characters are written in various curved & cursive ways, so they could be of different sizes, orientation, thickness, format and dimension. An offline handwritten Hindi character recognition system using neural network is presented in this paper. Neural networks are good at recognizing handwritten characters as these ne...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology
سال: 2020
ISSN: 2321-9653
DOI: 10.22214/ijraset.2020.30815